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Abstract

This work integrates GPT-5 into the public, deterministically scored subset of Med-
HELM, a medically focused subsuite of HELM spanning quantitative calculation, factual
question answering, evidence grounding, hallucination resistance, fairness probes, and text-
to-SQL generation. The integration is append-only and configuration driven (parity prompts,
fixed seeds, temperature 0.0), preserving longitudinal comparability with prior GPT-4 era
baselines and external model entries without altering scenario semantics. The process pro-
vides a transparent path to track incremental frontier model progress in medically relevant
capabilities while exposing residual risk surfaces.

Results show selective capability gains—stronger numerically grounded reasoning (MedCalc-
Bench tie) and broad factual recall (HeadQA, Medbullets new highs)— alongside regressions
or plateaus in schema-constrained generation (EHRSQL), fairness-sensitive reasoning (Race-
Bias), and full hallucination suppression (MedHallu shortfall vs leader). Efficiency is het-
erogeneous: some longer reasoning traces run faster, while short structured queries incur
latency penalties without accuracy benefit.

Keywords: MedHELM, GPT-5, Medical AI Evaluation, Clinical Reasoning, Benchmarking,
Safety

1 Introduction

Large language models (LLMs) have advanced clinical reasoning, structured information ex-
traction, and medical knowledge retrieval. MedHELM [1] is a comprehensive benchmark suite
that evaluates LLM performance across medical domains through standardized scenarios cover-
ing factuality, multi-step reasoning, safety constraints, and clinical ambiguity. The benchmark
tracks progress across multiple vendors and architectures in the foundation model landscape.

However, benchmark coverage lags behind new model releases. The recently released GPT-5
represents a major release not yet systematically evaluated within MedHELM’s medical sce-
narios. This gap limits our ability to (i) quantify longitudinal progress from the latest model
generation, (ii) identify which capability clusters (medical calculations, EHR text-to-SQL, differ-
ential diagnosis, hallucination resistance) benefit most from recent innovations, and (iii) surface
persistent high-risk failure modes.

Evaluating GPT-5 within MedHELM is essential for both scientific measurement and evidence-
based deployment risk assessment. Clinically meaningful progress requires more than aggregate
accuracy gains—it depends on calibration under uncertainty, reduced hallucinations, correct
structured outputs, and reliable tool-integrated reasoning. By systematically adding GPT-5
to existing MedHELM scenarios, this work enables temporal comparison against GPT-4 era
baselines and other leading models.

This work reports (1) methodology for reproducibly integrating a post-release model into
MedHELM without contaminating prior scenario distributions, (2) quantitative deltas between
GPT-4 and GPT-5 across diverse medical task families, and (3) analysis of error typologies that
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remain clinically salient. The results offer an updated empirical snapshot of frontier medical
LLM capability and highlight evaluation design principles needed to ensure benchmarks remain
discriminative as model performance improves.

2 Results

2.1 Selected Scenarios

MedHELM categorizes benchmarks into three access levels: (i) Public benchmarks that are
fully open and freely available (e.g., HuggingFace Datasets) with no access requirements, (ii)
Gated benchmarks that require special permissions, credentials, or data use agreements (e.g.,
PhysioNet datasets), and (iii) Private benchmarks based on proprietary datasets available
only to specific organizations. Only public benchmarks enable full reproducibility for any re-
searcher.

This evaluation prioritized public scenarios satisfying three criteria: (i) public accessibil-
ity, (ii) objective, automatable scoring (exact match, execution accuracy, or deterministic
classification without LLM jury adjudication), and (iii) reproducibility (fixed seeds, determin-
istic sampling, versioned evaluation scripts). This avoids reliance on proprietary data or LLM
jury scoring pipelines that introduce variability and limit longitudinal comparability through
judge model selection, prompt sensitivity, and biases that shift over time. Table 1 summarizes
the selected scenarios and their clinical rationales.

Scenario Capability Axis Description

MedCalc-Bench Quantitative
calculations

Ensures precise dosing and acid-base computations; arithmetic
drift risks clinical mis-dosing or misinterpretation.

Medec Error detection Surfaces charting errors early to prevent propagation into down-
stream decision tools.

HeadQA Factual reasoning Emulates board-style multi-domain reasoning requiring cross-
specialty integration.

Medbullets Factual recall Gauges breadth of core clinical knowledge foundational for
higher-order reasoning.

PubMedQA Evidence-based
QA

Tests alignment of answers to limited evidence and discourages
unsupported speculation.

EHRSQL Text-to-SQL
generation

Assesses faithful structured data retrieval; failures risk incorrect
patient data extraction and analytic bias.

RaceBias Fairness
evaluation

Probes avoidance of race-based inappropriate differentials to en-
sure equitable recommendations.

MedHallu Hallucination
detection

Evaluates resistance to confident fabrication of unsupported clin-
ical claims.

Table 1: Selected MedHELM scenarios with deterministic scoring. Numeric scoring formula is scenario-specific
and represents variants of accuracy or exact match (EM).

This subset balances breadth across medical reasoning tasks while maintaining reproducible
evaluation for tracking longitudinal model progress.

2.2 Evaluation Results and Comparative Analysis

To quantify GPT-5 progress, this work compares GPT-5 against (i) established GPT-4 era
baselines (GPT-4o and reasoning-focused o3-mini) to measure generational improvements, and
(ii) the highest-performing model ("Leader") per scenario to assess competitive positioning. All
comparisons use identical evaluation conditions (temperature 0.0, same prompts and metrics).
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These comparisons isolate generational improvements within the GPT lineage while assessing
competitive positioning across major vendors.

To get started with the analysis, we first present the current MedHELM leaderboard stand-
ings prior to GPT-5 evaluation in Table 2. This table summarizes the highest reported perfor-
mance per scenario across all evaluated models to date, including GPT-4o, o3-mini, and other
leading models from the MedHELM leaderboard [2].

Scenario Current Leader Model Score

MedCalc-Bench DeepSeek R1 0.35
Medec o3-mini 0.69
HeadQA Claude 3.7 Sonnet / Claude 3.5 Sonnet / GPT-4o 0.91
Medbullets o3-mini 0.81
PubMedQA o3-mini / DeepSeek R1 / Claude 3.5 Sonnet 0.74
EHRSQL GPT-4o 0.32
RaceBias DeepSeek R1 0.92
MedHallu Claude 3.5 Sonnet 0.93

Table 2: Current MedHELM leaderboard standings prior to GPT-5 evaluation.

With the current leaderboard table established, we now report GPT-5 results on the selected
MedHELM scenarios. Table 3 lists scores for GPT-4o, o3-mini, GPT-5, and the current leader
per scenario. All runs share identical settings (temperature 0.0, shared prompts, fixed seeds).
Metrics are scenario-defined (exact match, execution accuracy, or numerical accuracy) and values
are shown as proportions.

Scenario Metric GPT-4o o3-mini GPT-5 Current Leader Model

MedCalc-Bench MedCalc Acc 0.19 0.34 0.35 0.35
Medec Flag Acc 0.58 0.69 0.66 0.69
HeadQA EM 0.91 0.89 0.93 0.91
Medbullets EM 0.71 0.81 0.89 0.81
PubMedQA EM 0.70 0.74 0.67 0.74
EHRSQL ExeAcc 0.32 0.27 0.18 0.32
RaceBias EM 0.90 0.87 0.72 0.92
MedHallu EM 0.85 0.90 0.88 0.93

Table 3: MedHELM scenario results for GPT-4 era models, GPT-5 and current leader model.

To contextualize performance we compute per-scenario deltas: GPT-5 minus the best GPT-
4 baseline (max of GPT-4o, o3-mini) and GPT-5 minus the current leader (which may be
an external model). Table 4 reports these values; positive indicates improvement, negative
regression.

GPT-5 establishes new highs in HeadQA (+0.02) and Medbullets (+0.08) and ties for the lead
in MedCalc-Bench (+0.01 over prior best GPT-4). Regressions are largest in EHRSQL (-0.14)
and RaceBias (-0.18), with smaller declines in PubMedQA (-0.07) and hallucination resistance
(MedHallu -0.02). The negative mean delta ( -0.04 vs best GPT-4, -0.05 vs leader) is driven by
a minority of scenarios with substantial deficits rather than broad underperformance. In this
regard, the high priority remediation targets are: (i) schema grounding + constrained decoding
for EHRSQL; (ii) fairness robustness (RaceBias); (iii) calibration on evidence- constrained QA
(PubMedQA); (iv) residual hallucination suppression.
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Scenario ∆ GPT-5 –GPT-4 ∆ GPT-5 – Current Leader ∆ GPT-4 –Current Leader

MedCalc-Bench +0.01 0.00 -0.01
Medec -0.03 -0.03 0.00
HeadQA +0.02 +0.02 0.00
Medbullets +0.08 +0.08 0.00
PubMedQA -0.07 -0.07 0.00
EHRSQL -0.14 -0.14 0.00
RaceBias -0.18 -0.20 -0.02
MedHallu -0.02 -0.05 -0.03

Mean -0.04 -0.05 -0.01

Table 4: GPT-5 performance deltas relative to best GPT-4 model and current leaders. Positive values indicate
improvement; negative values indicate regression.

Scenario New Leader Model Score

MedCalc-Bench GPT-5 / DeepSeek R1 0.35
Medec o3-mini 0.69
HeadQA GPT-5 0.93
Medbullets GPT-5 0.89
PubMedQA o3-mini / DeepSeek R1 / Claude 3.5 Sonnet 0.74
EHRSQL GPT-4o 0.32
RaceBias DeepSeek R1 0.92
MedHallu Claude 3.5 Sonnet 0.93

Table 5: Updated MedHELM leaderboard standings after GPT-5 evaluation. GPT-5 achieves new leadership
in HeadQA and Medbullets, and ties for leadership in MedCalc-Bench, demonstrating strengths in quantitative
reasoning and factual knowledge tasks.

GPT-5 attains new leadership in HeadQA and Medbullets and ties MedCalc-Bench, indicat-
ing strong multi-domain factual recall, reasoning, and quantitative calculation gains. Regressions
in EHRSQL and RaceBias show unresolved weaknesses in schema-grounded structured gener-
ation and fairness-sensitive reasoning. Overall performance is mixed: targeted advances with
persistent gaps. Mean deltas (−0.04 vs best GPT-4, −0.05 vs leader) indicate uneven progress
and clear remediation needs. Table 5 reflects the post-integration leaderboard, updating scenario
leadership to include GPT-5’s new or tied first-place scores.

2.3 Inference Latency Analysis

To complement accuracy-centric comparisons, this work reports per-scenario inference latency
for GPT-5 versus the Leader model in Table 6, using the per-instance mean (single request,
no batching, temperature 0.0) extracted from the HELM package generated reports. Because
only GPT-5 and (when different) the Leader model were logged in the current run configura-
tion, earlier GPT-4 family baselines (GPT-4o, o3-mini) appear only when they serve as Leader
(EHRSQL, Medbullets). A simple ratio (GPT-5 / Leader) is included. Latency should be in-
terpreted jointly with accuracy: a slower model may justify overhead if it provides clinically
relevant quality gains, while regressions with higher latency (e.g., EHRSQL) highlight priority
optimization targets.

GPT-5 averages 15.05s per instance vs 13.56s for current leaders (mean ratio 1.11). It is
faster where leader runs are longer: MedCalc-Bench (0.50×) and Medec (0.67×). Large ratio
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Scenario GPT-5 (s) Current Leader Model (s) GPT-5 / Leader

MedCalc-Bench 22.06 43.75 0.50
Medec 28.27 41.88 0.67
HeadQA 5.87 0.36 16.31
Medbullets 13.65 7.29 1.87
PubMedQA 4.88 1.49 3.28
EHRSQL 30.94 3.83 8.08
RaceBias 6.47 7.51 0.86
MedHallu 8.23 2.39 3.44

Mean 15.05 13.56 1.11

Table 6: Mean per-scenario inference latency. Ratio <1: GPT-5 faster than the accuracy leader model (Table 2).
Times include network overhead and are dependent on deployment conditions. In leader score ties, the fastest
(minimum) leader model among tied models is reported.

outliers (HeadQA 16.31×, EHRSQL 8.08×) stem from very small leader baselines (0.36s, 3.83s)
rather than extreme absolute times. EHRSQL combines slowdown and accuracy regression,
making it the top efficiency + quality remediation target; RaceBias is near parity (0.86×).

Overall latency is heterogeneous: GPT-5’s fixed overhead dominates short retrieval / clas-
sification prompts but amortizes on multi-step arithmetic and error-detection traces. Future
releases should add per-token latency with output length, variance / p95 statistics, and energy
or cost-normalized efficiency metrics to refine these comparisons.

3 Methods

3.1 Evaluation Framework

MedHELM is a curated subsuite within CRFM HELM that reuses HELM’s runners, metrics,
and artifact schema [4]. Adding GPT-5 therefore required an append-only configuration plus a
custom client; task semantics and deterministic settings (seed, temperature 0.0) were held fixed
so new outputs align with prior model–scenario pairs and preserve comparability.

We restrict to public, deterministically scored scenarios to avoid opacity from judge models,
subjective adjudication and stochastic drift.

A local HELM configuration layer requires:

• A run entries list enumerating scenario–model tuples (including GPT-5) for reproducible
invocation.

• A deployment specification mapping a logical GPT-5 id to the custom client and decoding
defaults.

• A credentials file or environment variable reference for secure key loading.

• A custom client that calls the OpenAI GPT-5 API using the desired deployment.

The existing OpenAI client targets GPT-4 era APIs and could not be reused (parameter schema
differences; unsupported fields like max tokens). Therefore a new wrapper that implements the
HELM interface was added.

The released packaged used is crfm-helm 0.5.6 to guarantee metric and normalization
parity with public leaderboard entries. Environment setup (recommended: Conda) isolates
Python + binary dependencies; no core HELM source was modified, preserving an auditable
append-only change surface.
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The post-installation evaluation workflow is as follows:

1. helm-run: resolve datasets (e.g., HuggingFace), then run inference for the configured
scenario–model tuples under fixed seeds.

2. helm-summarize: aggregate raw outputs into normalized artifacts for visualization and
comparison.

3. helm-server: launch a local UI to inspect summarized results interactively.

This process balances engineering overhead with auditability, enabling incorporation of new
frontier models while maintaining longitudinal integrity of MedHELM results.

3.2 Integrating GPT-5 into HELM

Documentation gaps affected model extension: existing HELM docs describe installation and
scenario structure but leave addition of a new models largely implicit. The framework is in-
tentionally modular, so integration strategy followed established extension patterns without
modifying core source.

The existing OpenAI client did not yet expose GPT-5, so a lightweight Python module was
added to wrap the OpenAI API with deterministic decoding while reusing HELM’s adapter +
normalization layers. This preserves metric semantics and artifact schema.

Undocumented but required steps were confirmed empirically: dynamic resolution of a new
deployment name, alignment between the registered key and run entry, and credential loading
via environment variable or a token file. The general implementation steps were:

1. Install HELM editable.

2. Add custom client exposing model id openai/gpt-5.

3. Register deployment in the models config.

4. Add run list entry.

5. Dry-run a small HeadQA batch for schema validation.

6. Execute full suite and collect JSON + aggregates.

Sampling, prompting, and metrics follow earlier described methodology.
The exact implementation artifacts for integrating GPT-5 into HELM alongside an unmod-

ified HELM installation are the following:

• Custom OpenAI Client Module (custom_client.py): Wraps the OpenAI API ex-
posing model id openai/gpt-5 while reusing HELM adapter + normalization layers to
apply existing metric implementations.

• Deployment Configuration (model_deployments.yaml): Registers the GPT-5 deploy-
ment (logical id, provider, decoding defaults) enabling dynamic resolution by the runner.

• Model Metadata (model_metadata.yaml): Supplies descriptive attributes (context win-
dow, modality flags, intended use tags) consumed by reporting/aggregation scripts.

• Credentials File (credentials.conf): Supports loading the OpenAI API key via envi-
ronment variable or token file path referenced by the deployment entry.

• Public Run Entries List (run_entries_medhelm_public.conf): Enumerates scenario–model
tuples (including GPT-5) for reproducible invocation of the selected public MedHELM sce-
narios.
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These configuration artifacts mirror the schemas and field conventions used by existing model
entries within the upstream HELM package (e.g., prior OpenAI and Anthropic model defini-
tions), enabling drop-in comparability and minimizing maintenance divergence.

Code Availability. All configuration files, custom client code, and run entry lists used to
generate the results in this paper are publicly available at https://github.com/fertrevino/
medhelm_gpt_5. The repository includes the exact run_entries specification, deployment meta-
data, and wrapper client needed to reproduce the GPT-5 MedHELM runs under the determin-
istic settings described.

4 Discussion

4.1 Performance Interpretation

GPT-5 exhibits selective advances rather than uniform superiority across medical task families.
Largest relative gains appear in numerically grounded and broad mixed-domain knowledge sce-
narios (MedCalc-Bench tie for lead, HeadQA +0.02 over prior leader, Medbullets +0.08 absolute
over best GPT-4 model), consistent with scaling benefits for multi-step arithmetic and seman-
tic retrieval without explicit chain-of-thought prompting. These improvements likely reflect
increased routed capacity and latent reasoning reliability, enabling accurate internal decompo-
sition under deterministic decoding. For each of the evaluated categories, these are the result
interpretations:

• MedCalc-Bench (0.35 tie for lead). +0.16 over GPT-4o and +0.01 over o3-mini indi-
cates consolidated arithmetic reliability; residual errors cluster in multi-variable acid–base
edge cases.

• Medec (0.66 < 0.69 leader). +0.08 vs GPT-4o but −0.03 vs o3-mini shows partial
progress in error flagging yet ceiling remains below clinically desirable threshold (≥0.75)
for low-risk deployment.

• HeadQA (0.93 new leader). +0.02 over prior 0.91 plateau signals incremental but
consistent cross-specialty reasoning lift under deterministic decoding.

• Medbullets (0.89 new leader). +0.08 over best GPT-4 baseline reflects broadened
factual recall; misses concentrate in low-frequency subspecialty items.

• PubMedQA (0.67 < 0.74 leader). −0.03 vs GPT-4o and −0.07 vs o3-mini suggests re-
duced calibration on abstract-style evidence questions; likely sensitivity to implicit ternary
answer priors.

• EHRSQL (0.18 < 0.32 leader). Largest regression: −0.14 vs GPT-4o driven by column
hallucinations and partial predicate omission; indicates schema grounding gap despite
broader reasoning gains.

• RaceBias (0.72 < 0.92 leader). Substantial fairness regression (−0.18 vs GPT-4o)
raising concern of emergent bias behaviors with scaling; prioritizes bias-aware fine-tuning.

• MedHallu (0.88 < 0.93 leader). +0.03 vs GPT-4o but trailing o3-mini (−0.02) and
leader (−0.05); improvements incomplete for high-stakes factuality demands.

Performance regressions in EHRSQL (−0.14 vs GPT-4o) highlight that generic reasoning and
factual recall gains do not automatically translate to schema-constrained structured generation.
Failure analyses (not shown) indicate a mix of column name hallucinations and incomplete
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logical condition coverage—suggesting a need for improved schema grounding and compositional
planning. RaceBias degradation (−0.18 vs best GPT-4 baseline, −0.20 vs external leader)
underscores that fairness-sensitive behaviors can backslide even as aggregate reasoning improves,
reinforcing multi-axis evaluation requirements for clinical adoption.

Safety and reliability signals are mixed: modest hallucination resistance improvement over
GPT-4o (MedHallu +0.03 absolute) still trails the external leader, while medical error flagging
(Medec) remains below 0.70 accuracy for all models, leaving clinically material residual risk.
These plateaus indicate that scaling alone has not closed gaps in subtle factuality and docu-
mentation error detection. Latency profiling shows heterogeneous efficiency: GPT-5 is faster
on longer arithmetic/error-detection traces (e.g., 0.50× leader latency on MedCalc-Bench) yet
markedly slower on short retrieval or structured generation tasks (HeadQA 16.31×, EHRSQL
8.08×), compounding the cost of quality regressions in the latter.

Limitations temper interpretation: (i) reduced sample counts (100) in some scenarios inflate
variance; (ii) exclusion of tasks requiring LLM or human judge scoring prioritizes determinism
but omits nuanced subjective safety assessments; (iii) potential public data leakage cannot be
definitively excluded; (iv) some external leaderboard references rely on published, not locally
replicated, scores; (v) latency measurements include deployment overhead and may not isolate
pure model inference.

In aggregate, GPT-5 advances numerically grounded and broad factual recall capabilities
while leaving structured querying, fairness, and certain safety behaviors as primary remediation
targets.

4.2 Future Work

Planned benchmark extensions focus on converting identified weaknesses into discriminative,
automatable evaluations: (a) enrich structured data tasks (expanded EHRSQL schemas, FHIR
query and temporal aggregation benchmarks) to pressure-test schema grounding; (b) introduce
calibrated probability elicitation for differential diagnosis and ambiguity-heavy cases to assess
overconfidence; (c) release fine-grained error taxonomies (hallucination subtype, bias mechanism,
SQL failure class) for open auditing; (d) add longitudinal drift tracking comparing monthly
checkpoint deltas to surface silent regressions; (e) integrate fairness stress tests spanning in-
tersectional attributes beyond race; (f) pilot semi-automated factuality adjudication pipelines
(retrieval-augmented citation verification) while retaining deterministic scoring paths.

Model-side remediation avenues include targeted schema grounding adapters, constrained
decoding or executable-in-the-loop SQL validation, curriculum-style fairness fine-tuning, and
hallucination-focused contrastive supervision. Public release of reproducible configurations (run
entries, deployment metadata) will continue to support longitudinal comparability and external
replication.

Overall, maintaining MedHELM as an append-only, transparency-first evaluation substrate
remains critical for distinguishing genuine clinical reasoning progress from redistribution of errors
across capability axes.
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